TÍNH CHẤP SUY RỘNG CỦA CÁC PHÉP BIẾN ĐỐI TÍCH PHÂN FOURIER
CONSINE VÀ KONTOROVICH – LEBEDEV VỚI HÀM TRỌNG

Ths. TRINH TUẤN
Bộ môn Giải tích Trưởng Đại học Thủy lợi

Tóm tắt: Xây dựng tính chất suy ròng của các phép biến đối tích phân Fourier cosine và kontorovich – lebedev từ đó tìm hiểu các tính chất của nó. Ứng dụng tích chất này vào giải hệ phương trình tích phân.

1. ĐẶT VẤN ĐỀ

Chúng hạn tính chất của phép biến đối tích phân Fourier [12].

\[
(f \circ g) (x) = \frac{1}{2^\frac{1}{4}} \int_1 \int_1 f (x \ y) g(y) dy; \quad x > 0; \quad (1)
\]

Thỏa mãn đẳng thức nhân tử hoạ:

\[
F (f \circ g) (y) = (F f) (y) (F g) (y); \quad 8y 2 \mathbb{R};
\]

Với \(F \) là phép biến đối tích phân Fourier [1].

Năm 1941 Churchill R.V xây dựng được tích chất đối với phép biến đối tích phân Fourier cosine [3].

\[
(f \circ g) (x) = \frac{1}{2^\frac{1}{4}} \int_0^\infty f (u) g(x + u) + g(j x \ y) du; \quad x > 0; \quad (2)
\]

Thỏa mãn đẳng thức nhân tử hoạ

\[
F_c (f \circ g) (y) = (F_c f) (y) (F_c g) (y); \quad 8y > 0;
\]

Với \(F_c \) là phép biến đối tích phân Fourier cosine [1].

Vào những năm 1967, 1987 tích chất của phép biến đối tích phân Kontorovich – lebedev đối với hai hàm \(f, g \) đã được Karichev V.A và Yakubovich S.B xây dựng [4, 14].

\[
(f \circ g) (x) = \frac{1}{2^\frac{1}{4}} \int_0^\infty \int_0^\infty \exp \left(i \frac{3}{2 \pi} \right) \frac{x \ y}{u} f (u) g(v) du dv; \quad x > 0; \quad (3)
\]

thỏa mãn đẳng thức nhân tử hoạ

\[
K (f \circ g) (y) = (K f) (y) (K g) (y); \quad 8y > 0;
\]

Với \(K \) là phép biến đối tích phân Kontorovich – lebedev [1].

Những năm 90 Yakubovich S.B đã xây dựng được một số tích chất suy ròng theo chỉ số của các phép biến đối tích phân Mellin [15], Kontorovich – Lebedev [16], \(G \) phép biến đối [9] và \(H \) phép biến đối [17].

Năm 1998 Kackichev V.A và Nguyễn Xuân Thảo đã cộng bố được phương pháp kiên kết tích chất suy ròng của ba phép biến đối tích phân bất kỳ với hàm trung [5] và đã có những ví dụ cụ thể nhờ phương pháp này [6, 7, 8].

1
Trong bài báo này nhà [5] tác giả xây dựng tích chấp suy rỗng của hai phép biến đổi tích phân Fourier cosine và Kontorovich – lebedev với hàm trong từ đồ tìm hiểu các tích chấp của nó. Đặc biệt ứng dụng tích chấp này vào giải hệ phương trình tích phân.

2. NỘI DUNG

Định nghĩa: Tích chấp suy rỗng của các hàm \(f, g \) với hàm trong \(^{o}(y) = \frac{1}{ysh(y)} \) đối với các phép biến đổi tích phân Fourier cosine và Kontorovich – Lebedev:

\[
(f \circ g)(x) = \frac{1}{y} \int_{0}^{1} e^{i uch(x+v)} + e^{i uch(x+iy)} f(u)g(v) dv, \quad x > 0
\]

Định lý 1. Giá số \(2 \leq L \leq x^2 \); \(g \geq 2 \leq \frac{1}{ysh}, R^+ \), thì tích chấp \((f \circ g)(x) \) \(2L(R^+) \) và thô môn đăng thức nhận tư hoà:

\[
F_c(f \circ g)(y) = ^{o}(y)(K^{1} f \circ g)(y), \quad 8y > 0;
\]

với \(K^{1} \) là phép biến đổi ngược của phép biến đổi Kontorovich – Lebedev.

Chứng minh định lý: Do \(u; sh(x + v) e^{i uch(x+v)} \) 0 khi \(u; v \) + 1, do đó chứng ta có:

\[
= \int_{0}^{1} e^{i uch(x+v)} + e^{i uch(x+iy)} f(u)g(v) dv = \int_{0}^{1} \int_{0}^{1} e^{i uch(x+v)} + e^{i uch(x+iy)} f(u)g(v) dv
\]

\[
= \int_{0}^{1} \int_{0}^{1} e^{i uch(x+v)} + e^{i uch(x+iy)} f(u)g(v) dv = \int_{0}^{1} \int_{0}^{1} e^{i uch(x+v)} + e^{i uch(x+iy)} f(u)g(v) dv
\]

\[
= \int_{0}^{1} \int_{0}^{1} e^{i uch(x+v)} + e^{i uch(x+iy)} f(u)g(v) dv = \int_{0}^{1} \int_{0}^{1} e^{i uch(x+v)} + e^{i uch(x+iy)} f(u)g(v) dv
\]

\[
= \int_{0}^{1} \int_{0}^{1} e^{i uch(x+v)} + e^{i uch(x+iy)} f(u)g(v) dv = \int_{0}^{1} \int_{0}^{1} e^{i uch(x+v)} + e^{i uch(x+iy)} f(u)g(v) dv
\]

với \(C_1, C_2 \) là các hàng số.

Mặt khác:

\[
\int_{0}^{1} e^{i uch(x+\overleftarrow{v})} dx = \frac{1}{u} e^{i uch}\]

và

\[
\int_{0}^{1} e^{i uch(x+\overleftarrow{v})} dx = \frac{1}{u} e^{i uch}\]

và

\[
\int_{0}^{1} e^{i uch(x+\overleftarrow{v})} dx = \frac{1}{u} e^{i uch}\]

và

2
Từ (6) nhận được:

\[
\mathbf{Z}^1 \mathbf{Z}^1 \mathbf{Z}^1 \quad e^{u\operatorname{ch}(x+v)} \int (u) (u) j g(v) \, j dudvdx = \\
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

\[
\mathbf{Z}^1 \mathbf{Z}^1 \mathbf{Z}^1 \quad j \sinh(x+v) e^{u\operatorname{ch}(x+v)} \int (u) (u) j g(v) \, j dudv \\
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

\[
\mathbf{Z}^1 \mathbf{Z}^1 \mathbf{Z}^1 \quad e^{u\operatorname{ch}v} \int (u) (u) j g(v) \, j dudv \\
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

(8)

Từ (7) chúng ta có

\[
\mathbf{Z}^1 \mathbf{Z}^1 \mathbf{Z}^1 \quad e^{u\operatorname{ch}(x_i+y)} \int (u) (u) j g(v) \, j dudv = \\
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

\[
\mathbf{Z}^1 \mathbf{Z}^1 \mathbf{Z}^1 \quad j \sinh(x_i+y) e^{u\operatorname{ch}(x_i+y)} \int (u) (u) j g(v) \, j dudv \\
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

\[
\mathbf{Z}^1 \mathbf{Z}^1 \mathbf{Z}^1 \quad e^{u\operatorname{ch}v} \int (u) (u) j g(v) \, j dudv \\
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

6

\[
\mathbf{Z}^1 \mathbf{Z}^1 \mathbf{Z}^1 \quad \frac{2}{u} e^{u\operatorname{ch}v} \int (u) (u) j g(v) \, j dudv \\
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

\[
\mathbf{Z}^1 \mathbf{Z}^1 \mathbf{Z}^1 \quad \frac{1}{u} \int (u) (u) j g(v) \, j dudv < +1 \\
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

(9)

Từ (4), (8) và (9) ta có:

\[
\frac{1}{(f \ast g)(x) \, dx} 6 \frac{1}{\frac{2}{\chi}} \mathbf{Z}^1 \mathbf{Z}^1 \mathbf{Z}^1 \quad \frac{1}{u} \int e^{u\operatorname{ch}(x+v)} + e^{u\operatorname{ch}(x_i+y)} \, j dudv \\
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

Nên vậy chúng ta rằng \((f \ast g)(x) \in L^1(\mathbb{R}^+).\)

Mặt khác

\[
\hat{(y)(K^i \ast f)(y)(F \ast g)(y)} = \\
\begin{bmatrix}
\mathbf{Z}^1 & \mathbf{Z}^1 & \mathbf{Z}^1 \\
1 \frac{2}{\chi^2} \sinh(\frac{y}{2}) & \frac{2}{\chi^2} \cos(\frac{y}{2}) \sinh(\frac{y}{2}) K_{iy} (u) \int (u) g(v) \, dv \\
0 & 1 \frac{2}{\chi^2} \cos(\frac{y}{2}) K_{iy} (u) \int (u) g(v) \, dv \\
\end{bmatrix}
\]

Từ công thức 1 ([1] trang 130) thì
\[^{o}(y)(K^{i}f)(y)(F_{c}g)(y) = \]
\[= \frac{r}{2} \frac{Z^{1}}{2} \frac{Z^{1}}{4} \frac{1}{u} \cos(yv) f(u) g(v) \cos(yt) \ e^{i \ uch \ d \ d} \ dudv = \]
\[= \frac{1}{2} \frac{r}{2} \frac{Z^{1}}{2} \frac{Z^{1}}{4} \frac{1}{u} f(u) g(v) \cos(yt) + \cos(yt) \ e^{i \ uch \ d \ d} \ dudv \]
\[= (10) \]

Mặt khác:
\[\begin{align*}
&\frac{Z^{1}}{2} \frac{Z^{1}}{4} \frac{1}{u} \cos(yt) \ e^{i \ uch \ d \ d} = \frac{Z^{1}}{2} \frac{Z^{1}}{4} \frac{1}{u} \cos(yt) \ e^{i \ uch (t + v)} dt \\
&= (11) \\
&\frac{Z^{1}}{2} \frac{Z^{1}}{4} \frac{1}{u} \cos(yt) \ e^{i \ uch (t + v)} dt = (12) \\
&= (13) \\
\end{align*} \]

Từ (11) và (12) chúng ta có:
\[\frac{Z^{1}}{2} \frac{Z^{1}}{4} \frac{1}{u} \cos(yt) \ e^{i \ uch (t + v)} dt = (13) \]

Từ (10), (11), (12) và (13) thì:
\[^{o}(y)(K^{i}f)(y)(F_{c}g)(y) = \]
\[= \frac{r}{2} \frac{Z^{1}}{2} \frac{Z^{1}}{4} \frac{1}{u} \cos(yt) \ e^{i \ uch (t + v)} dt \]
\[= (14) \]

Như vậy đã chứng thực nhân tử hóa (5) được chứng minh.

Định lý 2. Tích chập \((f \star g)\) không có tính chất giao hoán và kết hợp nhưng có các đẳng thức sau đây:
Để chứng minh định lý này chúng ta sử dụng Định lý 1 và đẳng thức nhân tự hoá (2)

Định lý 3. Tích phân \((f \ast g)\) không tồn tại phần tử đơn vị.

Sử dụng định lý 1 và công thức 9.7.4 ([2] trang 199)

Định lý 4. Tích phân \((f \ast g)\) được biểu thị như sau:

\[
(f \ast g)(x) = p \frac{Z_1^{1/4}}{Z_4^{1/4}} \int_0^1 f(u) e^{\text{uchv} \ast g(v)}(x)du
\]

Sử dụng (4) và (1) để chứng minh định lý này.

Hệ quả. Với \(g\) là hàm chẵn thì

\[
(f \ast g)(x) = p \frac{Z_1^{1/4}}{Z_4^{1/4}} \int_0^1 f(u) e^{\text{uchv} \ast g(v)}(x)du
\]

3. ỨNG DỤNG GIẢI HỆ PHƯƠNG TRÌNH TÍCH PHÂN

Xét hệ:

\[
\begin{align*}
\mathbf{f}(x) + 1 & \mathbf{h}(x) = 0, \quad x > 0 \\
\mathbf{f}(x) + 1 & \mathbf{\hat{A}}(x + u) + \mathbf{\hat{A}}(jx + u) = \mathbf{g}(x) = \mathbf{k}(x)
\end{align*}
\]

trong đó các hàm đã biết \(\mathbf{A}; h; k\) \(\mathbf{L}(R_+)\) và \(\mathbf{\hat{A}}(\frac{1}{x}; R_+)\).

\[
\mu(x; u) = \frac{1}{4^{1/4}} \int_0^{Z_1^{1/4}} [e^{\text{uch}(x + v)} + e^{\text{uch}(x + v)}] dv
\]

\(\lambda_1, \lambda_2\) là các hàng số phức và \(f, g\) là các ảnh hàm

Định lý 5. Nếu có điều kiện

\[1 \mathbf{1} \mathbf{1}, 2 \mathbf{F}_c(\ast \mathbf{\hat{A}})(y) \neq 0; \quad 8y > 0\]

thì hệ (15) có nghiệm:

\[
f(x) = \mathbf{h}(x) + (1 \mathbf{h})(x) + (1 \mathbf{\hat{k}})(x) + (1 \mathbf{\hat{k}})(x) + 2 \mathbf{L}(R_+)
\]

\[
g(x) = \mathbf{k}(x) + (1 \mathbf{h})(x) + 2(\mathbf{\hat{A}})(x) + 2(1 \mathbf{h})(x) + 2(1 \mathbf{\hat{A}})(x) + 2 \mathbf{L}(R_+)
\]

trong đó \(l(x) = 2 \mathbf{L}(R_+)\) và thỏa mãn

\[
(\mathbf{F}_c l)(y) = \frac{1 \mathbf{1} \mathbf{1}, 2 \mathbf{F}_c(\ast \mathbf{\hat{A}})(y)}{1 \mathbf{1} \mathbf{1}, 2 \mathbf{F}_c(\ast \mathbf{\hat{A}})(y)}
\]

Abstracts

ON THE GENERALIZED CONVOLUTION WITH A WEIGHT FUNCTION FOR THE FOURIER COSINE AND KONTOROVICH – LEBEDEV INTEGRAL TRANSFORMS

The generalized convolutions with a weight function for the Fourier cosine and Kontorovich-Lebedev integral transforms are introduced and studied. Application for these new convolutions to solving systems of integral equations are suggested.